Oscillation of partial difference equations with continuous variables

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Approach on Oscillation of Difference Equations with Continuous Variable

In this study, we introduce a new method for investigation of the delay difference equation ∆αx(t) + p(t)x(t− τ) = 0 for t ∈ [t0,∞) , where p ∈ C ( [t0,∞) ,R ) , α, τ ∈ R and ∆α denotes the forward difference operator defined as ∆αx(t) = x(t+ α)− x(t). AMS Subject Classifications: 39A10.

متن کامل

The Oscillation of Certain High Order Partial Difference Equations

In this paper, some criteria for the oscillation of the high order partial difference equations of the form T i(xm,n+axm−k1,n−l1−bxm+k2,n+l2) = c(qxm−σ1,n−τ1+pxm+σ2,n+τ2) are established, where c = ±1, i ∈ N = {1, 2, 3, . . .}.

متن کامل

Oscillation of solutions of impulsive neutral difference equations with continuous variable

We obtain sufficient conditions for oscillation of all solutions of the neutral impulsive difference equation with continuous variable Δτ(y(t) +P(t)y(t−mτ)) +Q(t)y(t− lτ)= 0, t ≥ t0− τ, t = tk, y(tk + τ)− y(tk)= bk y(tk), k ∈N(1), where Δτ denotes the forward difference operator, that is, Δτz(t)= z(t+ τ)− z(t), P(t)∈ C([t0− τ,∞),R ),Q(t)∈ C([t0− τ,∞),(0,∞)),m, l are positive integers, τ > 0 and...

متن کامل

Oscillation criteria for a class of neutral difference equations with continuous variable

In this paper, we are mainly concerned with oscillatory behaviour of solutions for a class of second order nonlinear neutral difference equations with continuous variable. Using an integral transformation, the Riccati transformation and iteration, some oscillation criteria are obtained.  2003 Elsevier Inc. All rights reserved.

متن کامل

Oscillation of Fractional Nonlinear Difference Equations

The oscillation criteria for forced nonlinear fractional difference equation of the form ∆x(t) + f1(t, x(t+ α)) =v(t) + f2(t, x(t+ α)), t ∈ N0, 0 < α ≤ 1, ∆x(t)|t=0 =x0, where ∆α denotes the Riemann-Liouville like discrete fractional difference operator of order α is presented. Mathematics Subject Classification: 26A33, 39A12

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical and Computer Modelling

سال: 2000

ISSN: 0895-7177

DOI: 10.1016/s0895-7177(99)00220-4